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Propagation in Arbitrarily Magnetized Ferrites Between
——

Two Conducting

H. UNZ~, SENIOR

Summary—The electromagnetic waves propagating in arbitrarily

magnetized homogeneous ferrites between two perfectly conducting

parallel planes have been investigated by using the operational cal-

culus method. The discrete propagation constants and the eigen-

values are to be determined from an algebraic equation of the fourth

order and a determinsntal equation derived from the boundary con-

Wions. The hybrid modes thus found degenerate to the solutions

already found for the particular cases of longitudinally and trans-

versely (parallel and perpendicular to boundaries) magnetized fer-

rite cases.

I. INTRODUCTION

I
N RECENT YEARS the magnetized ferrites with

their gyrotropic media characteristics have been

used extensively in waveguide applications. The

general mathematical analysis of electromagnetic waves

in a homogeneous, gyrotropic magnetized ferrite (or

plasma) in a waveguide is important and rather dif-

ficult. Two separate boundary-value problems are

usually considered:

1)

2)

The longitudinally magnetized gyrotropic media

—the static magnetic field is in the direction of

propagation.

The transversely magnetized gyrotropic media—

the static magnetic field is perpendicular to the

direction of propagation.

Polder [1] derived the tensor permeability of the

ferrite media. Hogan [2] made experimental studies of

the propagation in a cylindrical waveguide containing

ferrites, and of the Faraday rotation effect. Suhl and

Walker [3], Gamo [4], Kales [5], and Ginzburg [6]

solved the problem of a circular waveguide completely

filled with a longitudinally magnetized ferrite. Van-

Trier [7] discussed the modes which can exist in a

parallel plane waveguide. Mikaelyan [8] used reflection

of waves in order to solve the problem of propagation

in a rectangular waveguide with transversely mag-

netized ferrite. Chambers [9] discussed the solution for

a cylindrical waveguide of arbitrary cross section, filled

with a longitudinally magnetized ferrite. A general
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theoretical approach to the problem and a discussion

]f previous results has been given by Epstein [10]. An

;xtensive summary has been given by Kales [11].

General formulations of the equations and results for

point sources and discontinuities in waveguides were

~iven by Bresler [12 ]– [14]. Mikaelyan [8], Seidel [15],

md Barzilai and Gerosa [16] used the arbitrarily di-

rected plane wave as the basic solution in magnetized

[errites. A similar idea for a more general medium has

been used by Unz [17], [18]. Sandier [19] discussed

the circular-cylinder problem with longitudinal mag-

netization, using reflection of waves. Barzilai and

Gerosa [20] solved the problem of propagation in a

rectangular waveguide with longitudinally magnetized

[errite.

Bunkin [21] gave the formulation for the radiation

irom current sources in an anisotropic medium. This

was extended later by Chow [22]. Tyras and Held [23]

~iscussed the radiation problem from the open end of

I waveguide with magnetized ferrite. Lax and Button

[24] discussed nonreciprocal applications. Tonning [25]

:alculated the energy densities in anisotropic media.

Arbel [26] discussed the radiation from a point source

in a bounded anisotropic medium.

Besides the references mentioned above, there are

numerous other articles discussing the propagation in

gyrotropic media, the corresponding boundary-value

problems, and related material. Extensive bibliography

may be found in several books and reports [17], [27 ]–

[30].

The purpose of this paper is to solve a more general

problem—the propagation of electromagnetic waves in

a homogeneous, arbitrarily magnetized ferrite between

two perfectly conducting parallel planes. It is proposed

to solve this problem by using the Fourier integral (or

series) transformation and the operational calculus

method. This method has been used by Unz [17], [18]

in order to discuss propagation in general media and to

solve propagation problems in transversely and longi-

tudinally magnetized ferrites between two parallel per-

fectly conducting planes. It will be shown that our

general solution will include the above-mentioned re-

sults as particular cases.

II. THE PRO P~GATION CONSTANT

The equations which govern the propagation of elec-

tromagnetic waves in a homogeneous, gyrotropic,

source-free medium, assuming harmonic time variation
g+].t are as follows:
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vxE=jLdzi (la)

Vxz=–juz (lb)

D=.sE (2a)

z ==(p)z? (2b)

where for the case of arbitrarily magnetized ferrites

[31 ] (p) is a tensor of the form

[1
PI @l 42*

(P) = PI* /42 f3 . (3)

P2 p3* P3

Fig. l—The static magnetic field.

{Y

Assuming the static magnetic field ~, in the direction / /

(0, +) as in Fig. 1, the components of the tensor in (3)
/ 5
/ /

are given [i? I ] by /
5

~,-~ /

PI = P + (po – P) sinz 9 COS2 @

/ ~,+~

(4a) / / x-
$ /

P? = P + (Po – p) Sinz O sinz @ (4b)
/ +
/ /

P3 = Po – (Po – P) sin~ O (4C) 5 $

PI = >(MO – p) sin’ 0 sin 2$ + jk cos 0 (4d) Fig. 2—Parallel-plane guide.

P: = i(po – p) sin 26’ cos 4 + jk sin O sin o (4-e)
Substituting (2) and (3) into (1) and using (5) and

p? = i(WO – v) sin 29 sin $-1- jk sin 0 cos & (4f) similar relationships, one gets, after rearranging,

UCLZJ — ~HLI . 0 (6a)

WCEU + -yH’ + .H’ =0 (6b)

coeEz aHY =0 (6c)

y@ + COP,HZ + UPIHU + wp,”H’ = O (6d)

– YE’ –CYEz + COP,*HZ + wMH~ + cJp,H” = O (6e)

Q@ + WPZH’ + OJP,*H” + tiw:,H” = O. (6f)

PI*, P2*, P3* are the complex conjugate values. The

tensor in (3) reduces to simpler well-known forms for

particular cases. One can see that for- a Iossless case, (,u)

in (3) in Hermitiau.

Taking the two perfectly conducting parallel planes

to be perpendicular to the x axis, as in Fig. 2, one could

assume a solution independent of the y axis, for propa-

gation in the z direction, in the following form:

The above solution will be applicable as long as the

sources will be infinite and also independent of the y

direction. Similar relationships are available for the

rest of the field components. E’ is called the transformed

value of Ez. In (5) one has -y =7(cM), and the correspond-

ing propagating wave will include the sum of all the a

components, which will give the same propagation con-

stant ~.

The complete derivation of (6) may be found in a previ-

ous paper [17 ]. It is obvious that in olu- operational

calculus method d/19.~ =ja, d/dz = — j~.

The homogeneous set of equations (6I) will have a

nontrival solution if and only if the determinant of the

coefficients will be zero:

tie 00 O–-yo

o OJe O-yea

o 0 tic O–so

Oyo
= o. (7)

@!J1 WPI ~P2*

–7 o –a! c!@l* Wpz wp3

0(2 o rJp2 Wpz’ Wp]

From the determinautal (7), one may find the following

relationship:

+ 2W4C2 Re [(o’ep, – ay)plpz] = O (8)
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where Re means the real part of the complex number. ueEu + YH’ + CYHZ = O

Eq. (8) may be rewritten as follows:

YE” + CJIJIHZ + copz*H’ = –

1.W-Y4– 2a-i3Repz+ {CY2(LL1+IJJ +CJ2e[] PZ]2+ \ Ptlz

May

. I-4-41-+ I-L2)]]72+ 2CI[(C02WZ— ~2)Rep2
‘Y2 + C@ — Cd2eJL2

wpl*Hz + coLb3Hz = E%.
a

– 0J2C Re (P1PS)]7 + Kla4 + @2@2[ I pl ]2 + I p212

These are three linear equations with three unknowns.

– IJl(#2 + ~s)] + @462[#l#2W3 + Z Re (plp2p3) All the transformed components E“, llz, Hz may be

‘#llp3\2– f13\pl/2-~21p2 /2]= O. (9)
found there in terms of the transformed component Ez.
Solving by determinants, one obtains:

E.

()1 U’E(-yplp$ – a [ pl 12) + (72 + a2 – AJ2)(7P2* – Wl)
=T!J=— (llC)

% a ?3(U2W – 72) + pl*(cQ’ – c4&p2*)

Hz 1 1 W%2 I pl 12 – (-# + C22– de#2)(72 – OPW1)

()

~=7= ~

p3(@’Wl – 72) + p1*(a7 – cO%p2*) “

(he)

Eq. (9) is an algebraic equation of the fourth order for

the propagation constant T = y(a). Since the determi-

nant (7) is Hermitian, all the coefficients of the alge-

braic equation (9) are real.

III. THE FIELD COMPONENTS

In this section we will find the ratio between the dif-

ferent transformed field components in our solution.

Disregarding (6f) and rewriting the rest of (6) one

obtains:

Eqs. (11) give the ratios of the transformed com-

ponents. The factors r and q are complex and are defined

above. Since the medium is homogeneous, all media

parameters are constant. However, there are usually

different values of a denoted by al, az, a,, CM. The cor-

responding constants in (11) for different a will be

7P(CI! = al) = 7rl’ ?F(a = 4 = ‘7T2’

?r’(a = a3) = 7r32 7P(CI = a4) = 7r4z (12)

and so on for the rest of the constants.

UCE’ – ~H?J =0

OJEEU + yH” + aHz =0

— ~Hu — —— ueEz

YE” + qJIH’ + ap,Hu + up,*Hz = O

–yE’ + OJp,*Hz + CO142HU + wp3Hz = CYE2.

(lOa)

(lOb)

(Ioc)

(lOd)

(lOe)

From (10) all the transformed components can be found IV. THE BOUNDARY CONDITIONS

in terms of -t?Z, by solving five linear equations with five
In Fig. 2 the necessary boundary conditions for the

unknowns. From (1OC) one obtains
parallel perfectly conducting infinite planes are

From (1 la) and (lOa) one obtains

(ha) E,=O x=—a 9 x=+a (13a)

EU=O ~=—~
7 x=+a. (13b)

@
‘Y From (8) or (9) one can see that for a given value of the

=m. =_.
(Ilb) propagation constant -y, one will get a fourth-order alge-~s a

braic equation for a, which has for our problem four

Substituting (11) into (lob), (lOd), and (lOe) one ob- distinct solutions, CM, CZ2,CY3,a4. Therefore, for a given

tains propagation constant -y, one may write the most general
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solution in the form of (5), assuming the propagation

factor e+~ftif-~’l, i [Amm.” - Bdrm,u]COsctma == o (16e)
*=1

4

E. = ~ (A. + jB.)e~”~” (14a)
m=1

~ [Am?# + hrm.~]Coscrm(z== 0; (16f)
m=]

and by subtracting (15d) from (15c),

~ [A~r~E” - B~r~,u] sin a..== O ( 16g)
r’= 1

~ [Am7rm,~ + Bm7rmR~j sin a~a = O. (16h)
m=1

In all the above calculations am has been assumed to be

real or purely imaginary. In case am is a complex num-

ber, the procedure above should be modified, in order

to avoid a complex determinantal equaltion. In this

case am= a~~+ja~, should be substituted into (15) and

the exponential terms should be rewritten explicitly into

real and imaginary parts. Taking in each of (15) sep-

arately the real and the imaginary parts to be zero, one

will get eight homogeneous equations with eight un-

knowns (.4 ~, 11~) with trigonometrical and exponential

coefficients, which will be equivalent to the results in

(16).

Eqs. (16) represent eight homogeneous linear equa-

tions with eight unknowns. One may obtain a nontrivial

solution if the determinant of the coefficients of the un-

where .4 ~, B~ are real constants, to be evaluated. Using

(1 lc) and the notation in (12), one may find from (14a)

where ~~g are complex in general. Substituting the

solution (14) in the boundary conditions (13) one ob-

tains

A

(15a)

~ (Am+ jBJd@.a == O (15b)
w’=1

Each one of the above equations consists of two parts,

real and imaginary, and each part is equal to zero. By

adding (15a) and (15b) and separating the real and the

imaginary parts, one may obtain knowns Am, B~ is zero:

A,

Cos ala

o

sin ala

o

7rlRv COSala

mu cos ala

w#’ sin ala

7T1jv sin ala

A,

cos aza

o

sin aza

o

A,

cos ffda

o

sin ma

o

B,

o

B,

o

B,

o

cos ffba

o

sin ffda

cos a,a

o
sin ala

Cos cw a

o
sin aza =0 (17a)

—Tip cos ala —7r2#’ cos a2a — 7r3,v cos ~$a

The determinantal equation (17a) may
(16a)

a symbolic form:

4 terms 4 terms

(16b)
m=l,2,3,4 m=l,2,3,4

be rewri ten in
~ Am Cos CY.,12= o

?7,=1

By subtracting (15b) from (15a) and

obtains

separating one

(16c)

(16d)

~ Am sin ama = O
m=1

~ B. sin oma = O.
m=l

= o.

Taking T~V ‘~,&+~~?nju one obtains, by adding (15c)

and (15d),
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The determinantal equation (17) gives a relationship

between the four eigenvalues al, az, cq, ah, the media

parameters, and the propagation constant 7, which is

introduced via the constant x-~ given in (1 lc).

Once (17) has been found as a relationship between

the eigenvalues am and the propagation constant T, one

of (16), for example (16h), could be disregarded, and

there will remain only seven equations (16). From

those seven linear equations one can find A JA 1, A ~/A 1,

A4/A1, BJA1l Bz/A1, 13J.41, B4/A1 by using determi-

nants. The results may be substituted into (14) and

similar relations found from (11) in order to give the

electromagnetic hybrid modes of propagation, as it was

done previously [17 ], [18].

V. THE HYBRID MODES

From (11) and (14) one may write the solution of the

boundary-value problem in the form

E, = ~ (A. + jBJei””X (18a)
m,=1

4

E. = ~ (A. + jBJm~zef””’ (18b)
m= 1

4

Eu = ~ (.4~ + j&J~~~ej”m’ (18c)
m=1

4 1
H. = ~ (.4. + j~m) — e~”@ (18d)

m=1 ~rnx

Hu = ~ (Am +jBJ ~ ej””’ (18e)
m=1 vm~

4 1
Hz = ~ (<lm + jllm) —– e~”nt’ (l%f)

?n=l ~mz

where the propagation coefficient e~f”~–~z) is understood.

The first step in our solution is to find the propaga-

tion constant ~ and the eigenvalues an. This can be

done by the simultaneous solution of the algebraic equa-

tion (8) and the determinantal equation (17). The

procedure of solution will involve numerical solutions

of trial and error. For a set of propagation constants ~

one could find by using (8) or (9) the corresponding

eigenvalues al, az, CZ3,a4. Then one should try which ones

of the solutions will obey the determinantal equation

(17). Only a discrete number of values of the propaga-

tion constant ~ will obey it, and it will represent the dif-

ferent modes of propagation. Of course these calcula-

tions will usually require extensive numerical work and

the use of a computer.

Once the propagation constant y and the eigenvalues

am have been found for a particular mode, the coeff-

icients Am, B~ may be found in terms of .41, for example,

by using (15) and determinantal solutions, as described

in the previous section. Substituting those coefficients

in (18) and using the definitions in (1 1), one thus finds

the propagating electromagnetic wave which will con-

sist of a set of hybrid modes [32].

While the process of solution has been described in

detail, it will involve in general quite a lot of numerical

and computer work-the solutions of fourth-order alge-

braic equations and the evaluations of 8 X 8 determi-

nants. Some examples for particular cases are given in

Section VI.

VI. PARTICULAR CASES

Several particular cases of the previous general solu-

tion will be discussed here.

A, Longitz~dinal Magnetization

In the case of a longitudinally magnetized ferrite, the

static magnetic field ~0 is in the direction of propaga-

tion z and one obtains 0 = O in Fig. 1. Eqs. (4) then be-

come

P1=L42=P /J3 = I-Jo (19a)

p, = jk p2=f3=o. (19b)

Substituting (19) into (9) one obtains

74-42a2’’-a2(1+:)l
(

2_k2+~(LApo – cd) de p )– a’ . (20)
/Jo P

Substituting (19) into (11) one obtains

E. ‘Y
=TZ=—

E. cl
(21a)

(21C)

Hz 1“
& [(7 – ti2w)(72 + u’ – CAL)

E%=qS=

— ti4#k2]. (21e)

Since from (21b) one obtains r# = O for a =real and

also from (20) one sees that the eigenvalues am appear
. . .
in pares, z.e. ,

al = (21; ~~ = — ~l; a3 = &z; a4 = – d,; (“a)

therefore, from (21b) and (22a) one obtains:

Substituting (22a) and (22b) in the determinantal

equation (17) one obtains finally two independent re-

sults :

tg &la tg tiza
— —. (23b)

~1 ~z
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The preceding results are identical with the one derived

previously, and the complete solution may be found

elsewhere [18 ].

B. Transverse Magnetization-Parallel

In the case of a transversely magnetized ferrite, with

the static magnetic field parallel to the two perfectly

conducting parallel planes, i.e., the static magnetic

field ~, in the y axis direction, one has O = 90° and

@ = 90°. Eqs. (4) then become

lJl=P3=P /.L2 = pa (21a)

p, = jk p,=p3=o. (24b)

Substituting (24) into (9) one obtains

[( 1.L2– k2

)1[’y~—(dqlo—d)]y—026———Cp=O. (25)
I-L

One obtains in this case two independent waves:

72 = JJepo — ~z TM wave (26a)

p2 — kz
72 . &_ — a2 TE wave. (26b)

P

Substituting (24) into (11) one obtains the components

of the two independent waves. For the TM wave,

E’ y E. a!
—. —.

Rv=ae’ HII’=Ue’

and for the TE wave, again using (26b),

(27a)

(27b)

In this case the solution degenerates to the point where

al=a2=aZ =a4=a=m7r/a where m = integer. The

above results are identical with the ones derived previ-

ously [7], [17 ], and the complete solution may be found

elsewhere [17 ].

C. Transverse Magnetization -Per@ndicular

In the case of a transversely magnetized ferrite, with

the static magnetic field perpendicular to the two per-

fectly conducting parallel planes—-i. e., the static mag-

netic field HO is in the x axis direction—one has: 0 = 90”
and c)= OO. Eqs. (4) then become

p, = jk pl = p2 = o. (Zsb)

Substituting (28) into (9) one obtains

(
~2 _ k2

)
+ @26/.hl C#y – az – : C12(OJ2qi – a2) = O. (29)

After some involved algebra (29) can be solved to give

+[2au2’H}”2 (30)

Substituting (28) in (11) one obtains the components of

the waves as follows:

(31a)

(31d)

In this case also the solution degenerates to the point

where al= CM= a3 = cw = a = mr/a where m = an integer.

The above results are identical with the ones derived

previously [8], and the complete solution may be found

elsewhere [17 ].

CONCLUSION

The problem of electromagnetic wave propagation in

arbitrarily magnetized ferrites between two perfectly

conducting parallel planes has been solved by using an

operational calculus method. A general algebraic equa-

tion of the fourth order, found from the Maxwell’s equa-

tions and the media constitutive relations, gives the re-

lationship between the propagation constant y and the

eigenvalues a. A transcendental equation, in the form

of an 8 X 8 determinantal equation found from the

boundary conditions, gives an additional relationship.

By numerical methods those two equations may be

solved. In general there will be four distinct, unidirec-

tional waves for each mode of propagation.

Once the discrete propagation constants have been

calculated, the corresponding field components can be

evaluated by using the relationships which have been

found. It has been shown that each h~jbrid mode of

propagation degenerates to previously found [17], [18]

particular cases when we take the static magnetic

field in one of the following directions:

1) Direction of Propagation (longitudinally mag-

netized).

2) Perpendicular to direction of propagation (trans-

versely magnetized) and parallel to boundaries.
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Perpendicular to direction of propagation (trans-

versely magnetized) and perpendicular to bound-

aries.

The above solution for the arbitrarily magnetized fer-

rites can be used in order to find the corresponding solu-

tion for the arbitrarily magnetized plasma, by using

certain transformation ideas given previously [17 ] while

keeping the boundary conditions invariant. The present

solution can be also used in order to solve the propaga-

tion of electromagnetic waves in arbitrarily magnetized

ferrites and plasma in a rectangular waveguide, by

using ideas similar to ones presented by Mikaelyan [8]

and by Barzilai and Gerosa [16] in their solutions.
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