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Propagation in Arbitrarily Magnetized Ferrites Between
Two Conducting Parallel Planes*

H. UNZ{, SENIOR MEMBER, IEEE

Summary—The electromagnetic waves propagating in arbitrarily
magnetized homogeneous ferrites between two perfectly conducting
parallel planes have been investigated by using the operational cal-
culus method. The discrete propagation constants and the eigen-
values are to be determined from an algebraic equation of the fourth
order and a determinantal equation derived from the boundary con-
ditions. The hybrid modes thus found degenerate to the solutions
already found for the particular cases of longitudinally and trans-
versely (parallel and perpendicular to boundaries) magnetized fer-
rite cases.

I. INTRODUCTION

N RECENT YEARS the magnetized ferrites with
I[ their gyrotropic media characteristics have been

used extensively in waveguide applications. The
general mathematical analysis of electromagnetic waves
in a homogeneous, gyrotropic magnetized ferrite (or
plasma) in a waveguide is important and rather dif-
ficult. Two separate boundary-value problems are
usually considered:

1) The longitudinally magnetized gyrotropic media
-—the static magnetic field is in the direction of
propagation.

2) The transversely magnetized gyrotropic media—
the static magnetic field is perpendicular to the
direction of propagation.

Polder [1] derived the tensor permeability of the
ferrite media. Hogan [2] made experimental studies of
the propagation in a cylindrical waveguide containing
ferrites, and of the Faraday rotation effect. Suhl and
Walker [3], Gamo [4], Kales [5], and Ginzburg [6]
solved the problem of a circular waveguide completely
filled with a longitudinally magnetized ferrite. Van-
Trier [7] discussed the modes which can exist in a
parallel plane waveguide. Mikaelyan [8] used reflection
of waves in order to solve the problem of propagation
in a rectangular waveguide with transversely mag-
netized ferrite. Chambers [9] discussed the solution for
a cylindrical waveguide of arbitrary cross section, filled
with a longitudinally magnetized ferrite. A general
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theoretical approach to the problem and a discussion
of previous results has been given by Epstein [10]. An
extensive summary has been given by Kales [11].

General formulations of the equations and results for
point sources and discontinuities in waveguides were
given by Bresler [12]-[14]. Mikaelyan [8], Seidel [15],
and Barzilai and Gerosa [16] used the arbitrarily di-
rected plane wave as the basic solution in magnetized
ferrites. A similar idea for a more general medium has
been used by Unz [17], [18]. Sandler [19] discussed
the circular-cylinder problem with longitudinal mag-
netization, using reflection of waves. Barzilai and
Gerosa [20] solved the problem of propagation in a
rectangular waveguide with longitudinally magnetized
ferrite.

Bunkin [21] gave the formulation for the radiation
from current sources in an anisotropic medium. This
was extended later by Chow [22]. Tyras and Held [23]
discussed the radiation problem from the open end of
a waveguide with magnetized ferrite. Lax and Button
[24] discussed nonreciprocal applications. Tonning [25]
calculated the energy densities in anisotropic media.
Arbel [26] discussed the radiation from a point source
in a bounded anisotropic medium.

Besides the references mentioned above, there are
numerous other articles discussing the propagation in
gyrotropic media, the corresponding boundary-value
problems, and related material. Extensive bibliography
may be found in several books and reports [17], [27]-
[30].

The purpose of this paper is to solve a more general
problem—the propagation of electromagnetic waves in
a homogeneous, arbitrarily magnetized ferrite between
two perfectly conducting parallel planes. It is proposed
to solve this problem by using the Fourier integral (or
series) transformation and the operational calculus
method. This method has been used by Unz [17], [18]
in order to discuss propagation in general media and to
solve propagation problems in transversely and longi-
tudinally magnetized ferrites between two parallel per-
fectly conducting planes. It will be shown that our
general solution will include the above-mentioned re-
sults as particular cases.

11. Tue ProracaTiON CONSTANT

The equations which govern the propagation of elec-
tromagnetic waves in a homogeneous, gyrotropic,
source-free medium, assuming harmonic time variation
etiot are as [ollows:
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VX H =juD (1a)
VX E = —jwB (1b)
D = ¢E (2a)
B=(WwH (2b)

where for the case of arbitrarily magnetized ferrites
[31] (u) is a tensor of the form

pr P pet
W) =1 p* w2 Ps (3)
pe P s

Assuming the static magnetic field H, in the direction
8, ¢) as in Fig. 1, the components of the tensor in (3)
are given [31] by
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Fig. 1—The static magnetic field.
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pr = g+ (uo — p) sin® 0 cos? ¢ (4a) X
pe = u + (o — p) sin® 6 sin? ¢ (4b)
ps = mo — (mo — u) sin? @ (40)
1= F(uo — p) sin? 0 sin 2¢ + jk cos 8 (4d) Fig. 2—Parallel-plane guide.
Pz = 3o — ) sin 20 cos ¢ + jEsin O sin g (de) Substituting (2) and (3) into (1) and using (5) and
ps = $(us — u) sin29sin ¢ + jksin@cos .  (4f) similar relationships, one gets, after rearranging,
welf® — vHvY =0 (6a)
weEY + yH* +aH? =0 {6b)
welt? — aHY =0 (6¢)
yEv + wuH*  FowpHY 4 wptH? = (6d)
—~ Er —aF* 4 wp*H? + wuHY - wpsH? =0 (6e)
alY + wpsH* 4 wps*HY  + wusH? = 0. (6f)

pi¥, po¥, ps* are the complex conjugate values. The
tensor in (3) reduces to simpler well-known forms for
particular cases. One can see that for a lossless case, (u)
in (3) in Hermitian.

Taking the two perfectly conducting parallel planes
to be perpendicular to the x axis, as in Fig. 2, one could
assume a solution independent of the ¥ axis, for propa-
gation in the z direction, in the following form:

E.(x,2) = 2 E'(a)e®e =, (5)

The above solution will be applicable as long as the
sources will be infinite and also independent of the y
direction. Similar relationships are available for the
rest of the field components. E?is called the transformed
value of E,. In (5) one has y=+y(a), and the correspond-
ing propagating wave will include the sum of all the «
components, which will give the same propagation con-
stant v.

The complete derivation of (6) may be found in a previ-
ous paper [17]. It is obvious that in our operational
calculus method 8/0x=ja, 0/0z=—jy.

The homogeneous set of equations (6) will have a
nontrival solution if and only if the determinant of the
coefficients will be zero:

we 0 0 0 —v 0
we 0 v 0 o
0 we 0 —a 0
=0. (1)
Y 0 w1 w‘_ﬁ1 wpg*
— 0 —«o wpl* wiy  wps
0 a 0 wpr wps* wu

From the determinantal (7), one may find the following
relationship:

(w?eu; — Y (w22 — o — v (weus — a?)

— wie? 1 P3

2wlepy — v2) — w4e2[ Pl[z(wzeug — a?)
P !2 + a2y? — 2ayw?e Re po)
+ 2wie? Re [(wzéﬁg — Ol’Y)ﬁlpg,] =0 (8)

— (c-ﬂep,g — 0(2 - ,yﬂ)<w4€2
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where Re means the real part of the complex number.
Eq. (8) may be rewritten as follows:

peyt — 2073 Re po + {e2(ur + us) + e[| po]2+ | psl?
— pa(ur -+ u2)1}7? + 20(w?eus — o?) Re pe
— % Re (pip) ]y + met + o?e?[| pa]* + | 2
— p1(pz + ua) | 4 w'e[uimoms + 2 Re (p1p2p3)

2
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welY 4 vH* + aH? =0

o?epy
YEY + ouH* + wp*H* = — E*

[43

V4o — Wl
wp*H + wpHr = — "R

[24

These are three linear equations with three unknowns.
All the transformed components Ev¥, H* H? may be
found there in terms of the transformed component E*.

—wm| sl = wa| pr]T— | pe[7] = 0. ©) Solving by determinants, one obtains:

Ev 1\ wle(ypips — a[ P1 !2) + (v 4 a? — weus) (vpa* — au1)

e _) (11¢)
E- a Palwiens — 1) + pr¥(ay — wleps®)
Ho 1 < 1 > —wiepips 4+ (v2 + o — wleus) (y — wleps*) (11d)
E* 9 wa pa(wlens — %) + pr¥(ay — wleps®)
H 1 < 1 >w4€2| p1]2 = (v + a? — weus) (v? — wlen) (11e)
E  7¢ \wa Pa(e®ens — ¥ + pr¥(ay — wleps®)

Eq. (9) is an algebraic equation of the fourth order for
the propagation constant y=<(®). Since the determi-
nant (7) is Hermitian, all the coefficients of the alge-
braic equation (9) are real.

I11. Tue FieLp COMPONENTS

In this section we will find the ratio between the dif-
ferent transformed field components in our solution.

Eqgs. (11) give the ratios of the transformed com-
ponents. The factors = and 5 are complex and are defined
above. Since the medium is homogeneous, all media
parameters are constant. However, there are usually
different values of « denoted by ou, @y, as, as. The cor-
responding constants in (11) for different o will be

(e = a;) = m° 7 = ag) = m°

Disregarding (6f) and rewriting the rest of (6) one e = ag) = m e = ) = (12)
obtains: and so on for the rest of the constants.

weF? — yHY =0 (102)

weEY + yH*® + aH? =0 (10b)

— aHY = — weE* (10c)

yEY 4 wpH®  FopHY 4 op H =0 (10d)

—~E* + wp*H® 4 wuHY + wpsH? = ak?, (10e)

From (10) all the transformed components can be found
in terms of E?, by solving five linear equations with five
unknowns. From (10c) one obtains

Hy 1 we

=—=— 11a
= (11a)
From (11a) and (10a) one obtains
E* 0%
—_ =gt = — (11b)
E? «

Substituting (11) into (10b), (10d), and (10e) one ob-
tains

IV. Tue Bounpary CONDITIONS
In Fig. 2 the necessary boundary conditions for the

parallel perfectly conducting infinite planes are

E, =0 x=+4a (13a)

x = 4 a.

x = —a,

E,=0 x=—a, (13b)
From (8) or (9) one can see that for a given value of the
propagation constant <y, one will get a fourth-order alge-
braic equation for «, which has for our problem four
distinct solutions, a1, as, as, ay. Therefore, for a given

propagation constant v, one may write the most general



1963

solution in the form of (5), assuming the propagation
factor e+J(wt——'yz),

4
E, = 2 (Ap + jBn)eions

m=1

(14a)

where 4,, Bn are real constants, to be evaluated. Using
(11c¢) and the notation in (12), one may find from (14a)

4
E, = D (Ap + jBu)wnterons (14b)
m==1

where m,? are complex in general. Substituting the
solution (14) in the boundary conditions (13) one ob-
tains

4
> (A + jBp)eiona == 0

me==l (15a)
4
Z (Am +ij)8+iama =0 (15b)
m=1
4
> (Am + jBu)mpteians = 0 (15¢)
m=1
4
> (Am + jBa)mtietions = 0. (15d)

m=1

Each one of the above equations consists of two parts,
real and imaginary, and each part is equal to zero. By
adding (15a) and (15b) and separating the real and the
imaginary parts, one may obtain

4
> Am oS ana =0

m=1

(16a)

4
> B 08 ama = 0.

m=1

(16b)

By subtracting (15b) from (15a) and separating one
obtains

4
> Apsinana =0

m=1

(16¢)

4
E By sin ana = 0.

m=1

(16d)

Taking mm?=mmzr?+jmn? one obtains, by adding (15¢)
and (15d),
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4
> [Amwmr? — Bmwmjy] CoS apa = 0 (16¢)
m=1
4
2 [AwTm + Butma?] cos ama = 0; (16f)
m=1
and by subtracting (15d) from (15c),
4
> [ Awmug? — Bun,?] sin ana = (16g)
m=1
4
2 [Auwmn,¥ + Bumue?| sin ama = 0. (16h)

m=1

In all the above calculations «,, has been assumed to be
real or purely imaginary. In case a,, is a complex num-
ber, the procedure above should be modified, in order
to avoid a complex determinantal equation. In this
Case Om = Qm,+ jom, should be substituted into (15) and
the exponential terms should be rewritten explicitly into
real and imaginary parts. Taking in each of (15) sep-
arately the real and the imaginary parts to be zero, one
will get eight homogeneous equations with eight un-
knowns (4m, Bn) with trigonometrical and exponential
coefficients, which will be equivalent to the results in
(16).

Eqs. (16) represent eight homogeneous linear equa-
tions with eight unknowns. One may obtain a nontrivial
solution if the determinant of the coefficients of the un-
knowns 4, Buis zero:

Ay As A; A B, B; B; By
cos 18 COS ai2a COS 3@ COS a4 0 0 0
0 0 0 0 Cos a,a coS 024 CoS a3 COS 40
sin a1a sin as2@ sin o3a sin o 0 0 0
0 0 0 0 sin c1¢ sin a0 sin aza sin as@ =0 (17a)
w1RY COS 1@ marY COS ae@  m3rY COS ez m4gY COS ayd  —my,Y COS ar@ —1!'2]” COS aa@  —wr3¥ COS a3 —mry¥ COS sl
7Y COS cn@  wa¥ COS anl  wy¥ COS 3@ wyy¥ COS ol mRY COS 14 worY COS asd m3RY COS a3a riRY COS sd
mRY SN 1@ waRY SN a2@  w3RY SIN @@ weg? SIN @y —wy¥ SID @ —wo? Sin @ —wg¥ sin as@ —wgy¥ Sin aua
m¥ sin a1@  wa¥ sin s wy¥ sin aza w4¥ sin aga 7r1RY Sin on@ moRY sin asa TaRY Sin ase xsR? sin aya

The determinantal equation {17a) may be rewritten in
a symbolic form:

4 terms 4 terms
m=1,2,3,4 m=1,2,3,4
COS am@ 0
0 COS Qe
SIN Am@ 0
0 sin ane

=0. (17b)

TmRrRY COS Om@ —Tm,¥ COS @

Tmj¥ COS Um@ TmRY COS @

Tmr? SIN @@  ~—Tm;¥ SIN 0@

Tmi? SIN @y Tmr? SIN otpa
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The determinantal equation (17) gives a relationship
between the four eigenvalues «y, s, a3, a4, the media
parameters, and the propagation constant 7, which is
introduced via the constant 7% given in (11c).

Once (17) has been found as a relationship between
the eigenvalues a,, and the propagation constant v, one
of (16), for example (16h), could be disregarded, and
there will remain only seven equations (16). From
those seven linear equations one can find Ay/41, A3/ 41,
A4/A1, Bl/fll, B2/441, Bg/fl]_, B4/A1 by using determi-
nants. The results may be substituted into (14) and
similar relations found from (11) in order to give the
electromagnetic hybrid modes of propagation, as it was
done previously [17], [18].

V. TeE HYBRID MODES

From (11) and (14) one may write the solution of the
boundary-value problem in the form

4
E, = Z (A + jBn)eions

(18a)
m=1
4
Ey = > (An + jBy)waterens (18b)
m==1
4
E, = > (Am + jBun)mmbeions (18¢)
m=1
¢ 1
H.= 3 (An+ jBy) — ¢ion (18d)
m=1 nmz
4 1
Hy = 3 (A +jBu) — eion (18¢)
m=1 Nm
4 1
H. =Y, (dn+ 7By —— eiane (18f)

m=1 Mm

where the propagation coefficient e?¢«*=72 is understood.

The first step in our solution is to find the propaga-
tion constant v and the eigenvalues .. This can be
done by the simultaneous solution of the algebraic equa-
tion (8) and the determinantal equation (17). The
procedure of solution will involve numerical solutions
of trial and error. For a set of propagation constants y
one could find by using (8) or (9) the corresponding
eigenvalues oy, o, as, ay. Then one should try which ones
of the solutions will obey the determinantal equation
(17). Only a discrete number of values of the propaga-
tion constant vy will obey it, and it will represent the dif-
ferent modes of propagation. Of course these calcula-
tions will usually require extensive numerical work and
the use of a computer.

Once the propagation constant v and the eigenvalues
o, have been found for a particular mode, the coefhi-
cients A, B, may be found in terms of 44, for example,
by using (15) and determinantal solutions, as described
in the previous section. Substituting those coefficients
in (18) and using the definitions in (11), one thus finds
the propagating electromagnetic wave which will con-
sist of a set of hybrid modes [32].
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While the process of solution has been described in
detail, it will involve in general quite a lot of numerical
and computer work—the solutions of fourth-order alge-
braic equations and the evaluations of 8 X8 determi-
nants. Some examples for particular cases are given in
Section VI.

VI. ParticurLarR CASES
Several particular cases of the previous general solu-
tion will be discussed here.
A. Longitudinal Magneiization

In the case of a longitudinally magnetized ferrite, the
static magnetic field H, is in the direction of propaga-
tion z and one obtains §=0 in Fig. 1. Egs. (4) then be-
come

(19a)
(19b)

M1 = M2 = M M3 = Mo
p1=jk p2=ps=0.
Substituting (19) into (9) one obtains

vt — y? [Zw“’eu — a? (1 + i):l
Ho

2 pe
+ il (w?eug — a?) <wze'u—-—— — a2>. (20)
U

Mo

Substituting (19) into (11) one obtains

E= %

= g% = — 21a
T (21a)
By —j » < w— B

—w=— Ty tar—o 21b
E? B ya k U * @ © > (21b)
H~ 1 Y

=— =+ =+ - o) (21¢)
E* 7° koo
Hv 1 we

= = (21d)
E? 7Y a
g1 —j

=—= - [(72 = @) (v2 + o — wleu)
E* n*  kwyat?

— whe?k?]. (21e)

Since from (21b) one obtains mz¥=0 for a=real and
also from (20) one sees that the eigenvalues a, appear
in pairs, z.e.,

o] = &1; oy = — ﬁl, a3 = &2; oy = — &2, (22&)
therefore, from (21b) and (22a) one obtains:
Y = w1y WY = — wy; wy? = wey wy¥ = — T (22b)

Substituting (22a) and (22b) in the determinantal
equation (17) one obtains finally two independent re-
sults:

(23a)

e, tg &1(1 = 3 tg (5220
tg e tg o
= : (23b)

m1 ]
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The preceding results are identical with the one derived
previously, and the complete solution may be found
elsewhere [18].

B. Transverse Magnetization-Parallel

In the case of a transversely magnetized ferrite, with
the static magnetic field parallel to the two perfectly
conducting parallel planes, 7.e., the static magnetic
field H, in the y axis direction, one has #=90° and
¢»=90°. Eqgs. (4) then become

1= p3 =g p2 = Mo (24a)
P2 = jk p1= p3=0. (24b)
Substituting (24) into (9) one obtains

L a2>] — 0. (25)
"

One obtains in this case two independent waves:

v — (e — )] [72 ~ (w%

TM wave (26a)

v = wleug — al

2 __ B2
2 M k

— a? TE wave.

’ (26b)

7= w
“
Substituting (24) into (11) one obtains the components
of the two independent waves. For the TM wave,
Ex ¥ Ez

(4
=— = (27a)
HY  we HY  we

and for the TE wave, again using (26b),

He jak

__ yetiak (27b)
Ev w(u® — &%)
il B

_ vk jau 270

B s

In this case the solution degenerates to the point where
o=oy=0y=coy=a=mr/a where m=integer. The
above results are identical with the ones derived previ-
ously [7], [17], and the complete solution may be found
elsewhere [17].

C. Transverse Magneiization-Perpendicular

In the case of a transversely magnetized ferrite, with
the static magnetic field perpendicular to the two per-
fectly conducting parallel planes—.e., the static mag-
netic field H, is in the x axis direction—one has: § =90°
and ¢ =0° Eqgs. (4) then become

He = ps = M M1 = o (28a)
ps =jk p1 = p2=0. (28b)
Substituting (28) into (9) one obtains
u? — k? Mo
vt — 52 I:wge,uo + w?e — o <1 + —)}
t n
2 g2
+ wleuo <w2e“ — a2> _ B a(wlep — a2) = 0. (29)
u n
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After some involved algebra (29) can be solved to give

1 2 — p2 ,
Y1, = — I:aﬁeuo + w?‘e'u — a? (1 + ﬁi})]
2 u 7
1 u? — k2 2
+ — {I:w'“’euo — w?e + a? <1 - &>j|
2 7 u
B 12
-+ I:Zaoﬂe,uo ~:| } .
u

Substituting (28) in (11) one obtains the components of
the waves as follows:

(30)

E* 0%

= g7 = — 31a
E* i @ (31a)
Ev po VP + o — w’eu

ey =t LT T (31b)
L P wleuy — 2
H* 1 v o+ a — o?
E* 7 wk  wleug — ?
Hy 1 we
—_— == (31d)
E* n¥ o
H*? 1 7

=— = — — |y + a® — wleu]. (31e
B awk[ 1] )

In this case also the solution degenerates to the point
where oy =cy=a3=oy=a=mr/a where m =an integer.
The above results are identical with the ones derived

previously [8], and the complete solution may be found
elsewhere [17].

CONCLUSION

The problem of electromagnetic wave propagation in
arbitrarily magnetized ferrites between two perfectly
conducting parallel planes has been solved by using an
operational calculus method. A general algebraic equa-
tion of the fourth order, found from the Maxwell’s equa-
tions and the media constitutive relations, gives the re-
lationship between the propagation constant v and the
eigenvalues . A transcendental equation, in the form
of an 8X8 determinantal equation found from the
boundary conditions, gives an additional relationship.
By numerical methods those two equations may be
solved. In general there will be four distinct, unidirec-
tional waves for each mode of propagation.

Once the discrete propagation constants have been
calculated, the corresponding field components can be
evaluated by using the relationships which have been
found. It has been shown that each hybrid mode of
propagation degenerates to previously found [17], [18]
particular cases when we take the static magnetic
field in one of the following directions:

1) Direction of Propagation (longitudinally mag-
netized).

2) Perpendicular to direction ol propagation (trans-
versely magnetized) and parallel to boundaries.
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3) Perpendicular to direction of propagation (trans-
versely magnetized) and perpendicular to bound-
aries.

The above solution for the arbitrarily magnetized fer-
rites can be used in order to find the corresponding solu-
tion for the arbitrarily magnetized plasma, by using
certain transformation ideas given previously [17 ] while
keeping the boundary conditions invariant. The present
solution can be also used in order to solve the propaga-
tion of electromagnetic waves in arbitrarily magnetized
ferrites and plasma in a rectangular waveguide, by
using ideas similar to ones presented by Mikaelyan [8]
and by Barzilai and Gerosa [16] in their solutions.
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